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Street. SU-426001 Izhevsk. USSR 
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AbstradThe problem of the electron spectrum of a substitutional binary alloy with diagonal 
disorder is considered. The general scheme of direct approximations with correct analytical 
propertieson the basisoirhe self-energy representation as anoperator continued fraction is 
proposed. The interpretation of the approximations obtained and the analysisofmrrecrions 
to them in terms of the Edwards diagrams are given. The scheme proposed is shown to lead 
to the well-known approximations. 

1. Introduction 

In the present work the model of a binary substitutional alloy with diagonal disorder 
with Hamiltonian given by 

i.1 

is studied. In (l), 117 specifies the state-vector localized at the site i ({li)} is assumed to 
generate a complete orthonormal basis for the lattice with N sites). {Ei }  is a set of 
independent random variables with distribution 

PE,(%) = cS@ - E , )  + (1 - c)S(% - %?) (2) 

where c is theconcentration of atomsof kind 1. Finally, the interatomichopping integrals 
V ,  in (1) are assumed to be non-random. 

The configurational averaging problem arising while calculating the macroscopic 
quantitiesofdisorderedsystemswith Hamiltonian (1) hasexistedforaiong time. Among 
a variety of different approaches to solve the problem, methods based on multiple- 
scattering theory are of great importance. The coherent-potential approximation (CPA) 
[I] was the first successful result obtained within the framework of such an approach. 
Another paper [Z] helped to elucidate its meaning. It showed that the CPA is the first 
approximation in the self-energy expansion in powers of the small parameter (a/Ro), 
where a is the lattice constant and Ro is the characteristic action radius of hopping. 
Different generalizations aimed at self-consistent calculation of electron scattering by 
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pain of atoms ran up against certain difficulties of both computational and fundamental 
character [3]. Only in 1978 did Mills and Ratanavararaksa [4] obtain a self-consistent 
expression for the self-energy, called the travelling-cluster approximation (TCA), which 
on the one hand takes into account the scattering by nearest-neighbour pairs and on the 
other satisfies the herglotz conditions 
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Z ( E  - iE) = T * ( E  + ie) ImZ(E - iE) 2 0 E > O .  (3) 

However, systematic constructions of the cluster generalizations of the CPA (CCPA) 
became possible on the basis of the augmented-space (AS) formalism proposed in [8,9] 
In the 1980s this approach was widely used for solving different tasks in the theory of 
disordered alloys. Papers [5,  71 were devoted to the CCPA in the single-electron states 
theory; in [5, 6, 161 this task was considered for the vibrational states of disordered 
alloys. In [17, 181 the generalization of the CPA was conducted for dynamic disorder. 
Recently the cluster generalization of the CPA was included in the Korringa-Kohn- 
Rostoker (KKR) scheme [19. 201. In [8] the AS formalism was used in the theory of 
conductivityindisorderedalloys. At thesame timeanumberofproblemsarenot settled, 
for example the nature of the approximation under consideration, the dependence on 
the dimensionality of space and the coordination number are not clear. 

The present paper is devoted to investigation of the cluster generalizations of the 
CPA on the basis of projection formalism in augmented space, elucidation of their 
correlation with the CPA and TCA. and their interpretation in terms of the Edwards 
diagrams [3]. 

2. Projection formalism in augmented space 

The representation of the real random quantity ;through the self-conjugate operator 2 
acting in an auxiliary space Q is the basis of the augmented-space (AS) formalism. We 
will not dwell on the introduction of the AS and interpretation of the random variables 
in the AS. these questions being discussed at length in [Fll]. We designate 

Here \col), ~ w J  are eigenvectorsof the operator 8, corresponding to the eigenvaluesZ1, 
?X2. The vector 10) is chosen so that 

(Olf(hl0) = (m) ( 5 )  

where ( .  . .) means the configurational averaging. Following the conventional ter- 
minology the states 10) and 11) will be referred to as ground and excited, respectively. 
The matrix elements of operator ,fin basis (4) are 

- + (1 -c)%* 

E l l  = g = (1 - c)Z, + c& (6) 

= 50’  = 5’ = [c(l - c)]l’*(%2 - %]). 
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Passing to the AS representation by rules described in [9-111, we rewrite the Ham- 
iltonian (1) in the form 

~ = z / i ) i , ~ i ~ ~ . .  .aii@. . .@i,~il+~C.li)v,i,~i2~. . . @ i N ( j I .  (7) 
i i.i 

where U, is a set containing n sites with lak) = Ilk)-the AS degrees of freedom being 
excited; 1 is the radius vector of the set U, centre of mass; i is the radius vector of the site 
where the electron state is localized, which is measured relative to the centre of mass of 
the set U,. The set of vectors (9) forms a complete orthonormal system in AS. Note that 
with n = 0 in (9) and hereafter one should set i = 0 in order to avoid multiple summation 
of the corresponding states in AS. 

Now let us pass to the momentum representation, performing the Fourier transform 
of the state vectors (9) on the cluster U,, centre coordinates: 

It is not hard to make certain that the vector set (10) is complete and orthonormal like 
(9). The Hamiltonian (7) in this basis looks like 

x = z 2e7 = z [xvc(q) + "u(q)l 
4 4 

Here 

HC means the term that is Hermitian conjugate to the last one; XYc(q) represents the 
Hamiltonian of the virtual crystal; Q(q) i s  the random potential; d is the cluster centre 
displacement due to the transition from o, to = U, U (i} ( d  = i/(n t 1)); i and i - d 
in"u(q) areradiusvectorsofoneandthesamelatticesitemeasuredrelative to thecentres 
of the cluster U" and u,,+~ respectively. 
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In the AS formalism the problem of the configurational averaging of the Hamiltonian 
according to (5) comes to the calculation of the diagonal matrix (1) resolvent ( E  - 

element of the Hamiltonian X<, (11) resolvent on the ground-state vectors (10) 

1 
(Gq(E) )  =z2$ W- w e x p ~ i - j ) ~  = (o,o",qI 1 / ( ~ -  x,) Io,oo7q) 

in other words to the calculation of the projection 

1 
G"(E. 4 )  = pv pv 

where the projection operators are determined by 

P" = C P , , =  z l i ,Un.q)(i .%,ql.  

P,Pm = P"8"nl. p,: = p,, x P,, = I ,  

n, 1.0" 

It is easy to ascertain that all properties of the orthogonal projectors are valid 

Using the projection technique in AS we rewrite (13) as 

.. . . . ~  . .. 
~~~ 

1 
Go(E,q)  = E - x,](ij - z ( , (E ,  4 )  

where 

#"(q)  = P,Xlr,Pv Q ,  = 1 - Po 
1 

W E ,  9) = PozqQv E - Q o X q Q o  QJeqPv. 

This representation is the initialone for approximatecalculationsofresolvent (13), (14). 
The representation of the Green function in the continued-fraction form with the 

help of the projection formalism was known long ago [21]. Various versions of this 
approach are based on the possibility of the choice of such an orthogonal basis in which 
the Hamiltonian matrix is a three-diagonal one (19). 



. .  
'?', A 

{ ' I  $ t Figure 3. Diagrams depicting first corrections to + ... 
0 ,  a, 0, a2 0 ,  the ATMA. 

+ & 5 - ! A + d d  t. 6 b - b  
0, 

In [17,18] the generalization of the CPA on the basis of projection formalism in the 
AS was considered for the lattice with arbitrary diagonal, including dynamic disorder. 
To solve similar problems it is sufficient to determine properly the inner degrees-of- 
freedom space at each site. From this point of view the representation of ZCPA(E) as an 
infinite continued fraction obtained in [17, 181 can be obtained from the common 
expression (20), which is formally exact. 

3. Analysis and discussion of different approximations 

Expression (20), obtained in the previous section, is a branched operator continued 
fraction. For a better understanding of subsequent approximations consider in detail its 
structure. As appears from (15) and (19) 

W q )  = %(d+Q"(d = c K J q )  = c l%"(q)+Q..(q)l 
(21) 0. 0" 

Xon  can be interpreted as a Hamiltonian of a virtual crystal containing n defects in sites 
ofthecluster on. X,(q)  is diagonal in theclustersununlike theoperatorsA,(q)describing 
the transitions between the clusters U, and 

A sequence of simplest approximations for (20) can be obtained supposing 
&(E,  q)  = 0 at the nth level. In this case the quantity 6 = c(1 - e)[(%! - % 2 ) / w ] z  is 
actuallythesmallparameter(wisthewidthof thevirtualcrystal band). First unvanishing 
corrections to the approximation will be proportional to 8"". In order to make sure of 
this and to compare the approximations obtained we will expand the nth approaching 
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Figure 4. Series corresponding to the third structural diagram in figure 3.  

fractionfor&,(E, q) inapowerseriesof6andg - $.Thisexpansioncan beconveniently 
expressed by diagrams, the main elements of which are represented in figure 1. 

Setting in (20) n = 1 and Z, (E ,  q) = 0, we get the expression for &,(E, q) which 
conforms to the diagram series in figure 2.  This approximation evidently coincides with 
the well known averaged t-matrix approximation (ATMA) [3.4,12]. The next non-self- 
consistent approximation is obtained as a result of the truncation of the continued 
fraction (20) at the second level (n = 2 ,  &(E, q)  = 0). It is easily seen that the sum of 
all possible diagrams shown in figure 3 contributes to the approximation considered 
along with the diagram series in figure 2 .  

Below. diagrams ofsuch type will be referred to as 'skeleton', assumingeach of them 
to be a sum of all diagrams of the following type: every triangle formed by directed lines 
issupplemented by any number of undirected onesgathering in its vertex (figure4shows 
the series corresponding to the third diagram in figure 3). The diagrams of figure 3 
containing intersecting lines of interaction obviously correspond to the coherent scat- 
tering processes on pairs of sites. Thus the conclusion can be inferred that the truncation 
of the continued fraction (20) at the nth level (&(E, q) = 0) allows one to take account 
of multiple scattering by the clusters of n excited sites. In diagram terms it means the 
sum of the contributions of all diagrams with cluster indices not exceeding n. 

The dependence of &(E, q) on the quasi-momentum is formed by the products of 
the exponential factors of the type exp(?i 4 4  involved in A,(q) ((11). (19)). These 
products evidently look like exp[iq(I- m ) ] ,  where m - I is the vector connecting the 
centres of mass of the extreme left and right clusters in the diagram describing the 
scattering process of interest. Hence in the sum of all the terms containing one and the 
same phase multiplier the coefficient ofexp[iq(I - m)]  has the meaningof theself-energy 
matrix element in the site representation &(E, I - m). Taking this into consideration 
the diagram series can be considered as depicted in the coordinate space ignoring the 
dependence on the quasi-momentum. 

The corrections for site multiple filling as stated above are automatically taken into 
account in the self-energy approximations by continued fractions. This is important 
because their consideration in direct calculations of the electron spectrum moments of 
higher orders may be quite laborious [3,12]. In diagram terms it means the prohibition 
of two or more lines with the same orientation, belonging to a site. Analytically this 
manifestsitselfastheabsenceof thetransitionoperatorli, un,q)(j,  un+,,ql wheniE U, 
in the Hamiltonian (11). 

It should also be noted that the approximations of &,(E, q) by the approaching 
continued fractions satisfy the herglorz conditions (3). Testing the first one is not hard, 
and the validity of the second one is proved with the help of the identity 
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Xn(E,q) -2: ( E ,  q )  =A,(q)Gni I (E,q)[Z:,t t(E,q) - ~ L I ( E , ~ ) I G : ~  L (E,q)A,f (4) 

(22) 
where G.(E, q )  = [ E -  X.(q) - Z,,(E, 4)j-l .  

The usage of the non-self-consistent approximations suggested above is possible only 
up ton = 2, .&(E, q )  = 0, since beginning from the second level the number of different 
configurations of clusters U" becomes infinite. As a result the problem of inverting 
matrices of infinite rank ariseswhile calculating the nth approaching fraction (20). It can 
be avoided when approximating Z0(E,  q )  by the figured approaching fractions used in 
the theory of the branched continued fractions [14]. For this purpose it is necessary to 
choose a set of clusters {U"} without those that involve each other; this choice depends 
on from which sets of sites the scattering is taken into account in the approximation. The 
clusters U,, which below will be called 'maximum' generate a family of sets 
{U,,,; m s n ,  U,,, U,}. The approaching continued fraction approximating &(E, q)  
(20) is obtained when retaining in operators Am(q) (19) only those terms which cor- 
respond to transitions within this family of sets. The branchesof the figured approaching 
fraction are generally truncated at different levels unlike the nth approaching fraction 
with all branches being truncated at the nth level. The approximation obtained in such 
a manner obviously fulfils the herglotz conditions as well. 

Let, for example, a nearest-neighbour pair uz be chosen as the maximum cluster in 
a one-dimensional chain. It generates the family consistingof oneset {ut,  uz}. Replacing 
now in (20) the operators Am(q) by the truncated ones according to the above rule, we 
obtain the figured approaching fraction describing the non-self-consistent TCA [4]. This 
approximation coincides with the sum of all diagrams of the type shown in figures 2 and 
3 with u2 being only a nearest-neighbour pair. Let us estimate the order of the terms 
omitted in the TCA. For instance, the sum corresponding to the first skeleton diagram in 
figure 3 is proportional to (GF/GG)3(X(")/c)2. where Z(O) is the self-energy cal- 
culated in the ATMA. It is of the same order in the parameter (Z'o)/c')z not depending 
on the distance between the sites i ,  j E uz, but its contribution to &,(E, q )  and also to 
thedensity of states depending on li - j l  reaches a maximum in different energy regions. 
As li - j /  increases the region of the main contribution of the states bonded on the pair 
of sites uz = { i ,  j }  shifts to the impurity band centre [13], where the single-site states are 
of main importance. These arguments allow us to substantiate the non-self-consistent 
approximations with 6 6 1 considered above. 

But the self-consistent approximations of Zo(E,  q )  have a greater region of appli- 
cation. To construct them we define the following operators: 

zY(E, q )  = 

X W ,  9)  = %(q) + XEff(E, 4) 
XEff(E, q )  = X F ( q )  + Z F ( E ,  4 )  

T::(E, q)  = I: / i ,  U " ,  q)  x;ff(E)(j, U " ,  q1 
0" i.i.0. 

(23) 

Xn(q)andXF(q) aredefinedin(21). Then theexpressionforZo(E, q)canberepresented 
as 
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Figure 5. Diagrams depicting firs1 corrections to 
+ .. , IheCPA. 

These expressions are equivalent to (20) and result from it by adding and subtracting 
.Z;ff(E, 9 )  at every level. To analyse and compare differcnt approximations. we expand 
the continued fraction (24) in a power series of the displacements from :%?'"(E, 9 )  and 
represent it by diagrams obtained from those depicted in figure 1, by replacing thin 
electron lines with the bold ones corresponding to matrix elements of the resolvent of 
the effective Hamiltonian (23). 

The simplest scheme of self-consistency is obtained if at n = 1 we put in (23) 

i e u , , j 4  U ; ,  (25) X:I;...(E.. q) = &&, d f  ( E ) 

In this case the dependence on the quasi-momentum in the equation obtained vanishes 
and after some algebra the equation can be rcduced to the CPA onc of Onodera and 
Toyozawa [15] 

where 

This approximation corresponds to the diagram series in figure 2, where thin electron 
lines are replaced by bold ones. Here we do not show the compensating diagrams 131, 
which are concerned with the corrections for multiple filling of sites. They appear due 
to conserving some of the matrix elements ZEff(E) after performing substitution (25) in 
(24). namely those matrix elements which satisfy at least one of the conditions: i E U, 

or j E U:. This compensation mechanism should also remain in self-consistent gen- 
eralizations considered below and will not be discussed in the following. 

We obtain the first unvanishing corrections to the CPA performing substitution (25) 
in (24) at the second level. The series of skeleton diagrams corresponding to these 
corrections is depicted in figure 5. Distinct undirected dotted lines in the two last 
diagrams mean that the corresponding series do not contain the terms cancelling in self- 
consistent approaches due to compensation. They include, for instance, the first three 
diagrams of figure 4. Thus, as one should expect, the corrections to the CPA begin with 
the diagrams with single-intersected directed interaction lines. 

As in the case of non-self-consistent cluster approximations the substitution (25) can 
be made for each n ,  that is the procedure of self-consistency at the nth level of the 
continued fraction (24) can be performed. That leads to taking into account all the 
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diagrams with cluster indices not exceeding n. But in contrast to the non-self-consistent 
case the corrections to the self-consistent approximation always start with the skeleton 
diagrams, each of them containing at least one n-fold-intersected directed line of inter- 
action. As shown in [2], they make a contribution to the self-energy proportional to 
(a/Ru)". The exponent m depends on the space dimensionality and the level number 
n ,  so in the three-dimensional case m = 4n + 2, and in the one-dimensional case m = 
n + 1, that is, the proposed scheme of self-consistency in the three-dimensional case 
yields the (n - 1)th approximation in the small parameter (a /Ro)4 .  Unfortunately its 
practical realizationrunsupagainst thesame difficultiesthat have already been discussed 
just after formula (22). A variant of approximation by figured continued fractions has 
been proposed as well, which can easily be generalized to the self-consistent scheme. 
The desired approximation is obtained when making the substitution (25) in (24) at all 
levels of the continued fraction, but only for those i, j which satisfy at least one of the 
conditions i U U,,, U" or j U U; $ U=. Here U,,,, U; and U, are clusters from the family 
of sets, which defines the structure of the continued fraction and has been discussed 
when constructing an analogous non-self-consistent approximation. As a result we 
obtain the CPA generalization where scattering by all clusters of the family of sets under 
consideration is taken into account. 

A well known self-consistent TCA [4,5] for a linear chain is obtained if substitution 
(25) is made at the first two levels of (24) for all i, jsatisfying at least one of the conditions 
i U U, u20rj U U ,  I$ u2, where u2is the nearest-neighbour pair. The first corrections 
to the self-consistent TCA are described by the diagrams in figure 5 ,  where u2 is not 
the nearest-neighbour pair. Their order-of-magnitude estimation has already been 
conducted when discussing the corrections to the non-self-consistent TCA. In the 
self-consistent case the TCA receives better substantiation. Really, in addition to the 
above estimations the additional smallness parameter appears here [3]. G;"(E) - 
exp[-li - jl/l,,(E)], where &,(E) is the mean free path of the electron. For example, 
the relative correction to the TCA brought by the diagram in figure 3 in the case 
of next-nearest-neighbour pair scattering is proportional to the coefficient 
exp[ -3a/lo(E)], The appearance ofthisadditional small parameteristhe main argument 
for self-consistent approximations in comparison with analogous non-self-consistent 
ones. 

4. Conclusions 

Thus with the help of the projection formalism in the AS the electron self-energy in 
the binary alloy model (1) can be presented as an operator continued fraction (20). 
Proceeding from this expression the paper proposes a general scheme of approximations 
of &(E, q) based on the usage of figured approaching fractions as approximants of the 
branched continued fractions [14]. 

The approach used in this work has a number of advantages. First, in terms of 
the projection formalism the corrections for multiple filling are taken into account 
automatically. This allows one to avoid a tedious combinatorial analysis of diagram 
series, which becomes boundless when out of the single-site approximation. Secondly, 
theapproximations built on the basisof figured approachingfractionssatisfy the herglofz 
conditions (3). The proof is conducted by analogy with [ll]. 

A discussion of both non-self-consistent and self-consistent variants of the approxi- 
mation scheme proposed has been conducted. Their interpretation in terms of Edwards 
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diagram is given. This allows us to compare the approximations obtained with those 
known earlier and also to control the order of the terms omitted. 

The corrections to the approachingcontinuedfractions truncated at the nth level are 
shown to be proportional to the parameter {c(l - c)[(%, - %2)/w]zp+1 in the non-self- 
consistent approximation and to the parameter (a/R,)"' in the self-consistent one. 
At n = 1 these approximations coincide with the ATMA and CPA respectively. The 
applicability condition of the self-consistent approaches for the three-dimensional case 
obtained in that way is that the inequality, analogous to those obtained in [2], 

should be true, where Eo is the spectrum boundary nearest to E,  calculated in the 
approximation under consideration. In other words, like the CPA, the self-consistent 
approximations proposed here for &(E, q)  become inapplicable near the spectrum 
boundaries. If we take into account that the CPA is a variant of the mean-field theory [2]. 
then the self-consistent approximation based on the figured approaching continued 
fraction takes intoconsideration the fluctuations in all clusters U, the scattering on which 
is considered exactly. In this case the small parameter of the approximation is exp[ - r /  
[ , ( E ) ] .  whereristhemaximumdistance between thesitesof theomittedcluster. Taking 
account offlucruations expands the spectrum boundaries especially in the impurity band 
and according to (28) the energy range where this approximation is valid. In the one- 
dimensional case with allowance for scattering only on nearest-neighbour pairs our 
results coincide with the TCA [4,5]. 
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